Selecting the rank of SVD by Maximum Approximation Capacity
نویسندگان
چکیده
Truncated Singular Value Decomposition (SVD) calculates the closest rank-k approximation of a given input matrix. Selecting the appropriate rank k defines a critical model order choice in most applications of SVD. To obtain a principled cut-off criterion for the spectrum, we convert the underlying optimization problem into a noisy channel coding problem. The optimal approximation capacity of this channel controls the appropriate strength of regularization to suppress noise. In simulation experiments, this information theoretic method to determine the optimal rank competes with state-of-the art model selection techniques.
منابع مشابه
Face Recognition Based Rank Reduction SVD Approach
Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...
متن کاملSystem Identification via CUR-factored Hankel Approximation
Subspace-based system identification for dynamical systems is a sound, system-theoretic way to obtain linear, time-invariant system models from data. The interplay of data and systems theory is reflected in the Hankel matrix, a block-structured matrix whose factorization is necessary for system identification. For systems with many inputs, many outputs, or large timeseries of system-response da...
متن کاملThe Singular Value Decomposition and Low Rank Approximation
The purpose of this paper is to present a largely self-contained proof of the singular value decomposition (SVD), and to explore its application to the low rank approximation problem. We begin by proving background concepts used throughout the paper. We then develop the SVD by way of the polar decomposition. Finally, we show that the SVD can be used to achieve the best low rank approximation of...
متن کاملOn the Tensor Svd and Optimal Low Rank Orthogonal Approximations of Tensors
Abstract. It is known that a high order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of a tensor. In face of ...
متن کاملA Rank Revealing Randomized Singular Value Decomposition (R3SVD) Algorithm for Low-rank Matrix Approximations
— In this paper, we present a Rank Revealing Randomized Singular Value Decomposition (R 3 SVD) algorithm to incrementally construct a low-rank approximation of a potentially large matrix while adaptively estimating the appropriate rank that can capture most of the actions of the matrix. Starting from a low-rank approximation with an initial guessed rank, R 3 SVD adopts an orthogonal Gaussian sa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1102.3176 شماره
صفحات -
تاریخ انتشار 2011